Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Blood ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518105

RESUMO

Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of precursor B or T cells (BCP- or T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (r/r) disease, high-risk leukemias and T-ALL, where immunotherapy approaches remain scarce. While the Interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody Lusvertikimab (formerly OSE-127) is a full antagonist of the IL-7R pathway showing a good safety profile in healthy volunteers. Here, we show that ~85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of Lusvertikimab immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including r/r and high-risk leukemias. Importantly, Lusvertikimab was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, Lusvertikimab targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). Lusvertikimab-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, Lusvertikimab may represent a novel immunotherapy option for any CD127-positive ALL, particularly in combination with standard-of-care polychemotherapy.

2.
Hemasphere ; 8(2): e48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435424

RESUMO

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

3.
MAbs ; 16(1): 2315640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38372053

RESUMO

Natural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity. Our study exploited two NKp30-specific sdAbs, one of which binds a similar epitope on NKp30 as its natural ligand B7-H6, while the other sdAb addresses a non-competing epitope. For EGFR-positive tumor targeting, humanized antigen-binding domains of therapeutic antibody cetuximab were used. We demonstrate that NKCEs bivalently targeting EGFR and bivalently engaging NKp30 are superior to monovalent NKCEs in promoting NK cell-mediated tumor cell lysis and that the architecture of the NKCE can substantially influence killing capacities depending on the NKp30-targeting sdAb utilized. While having a pronounced impact on NK cell killing efficacy, the capabilities of triggering antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity were not significantly affected comparing the bivalent IgG-like NKCEs with cetuximab. However, the fusion of sdAbs can have a slight impact on the NK cell release of immunomodulatory cytokines, as well as on the pharmacokinetic profile of the NKCE due to unfavorable spatial orientation within the molecule architecture. Ultimately, our findings reveal novel insights for the engineering of potent NKCEs triggering the NKp30 axis.


Assuntos
Fator de Crescimento Epidérmico , Células Matadoras Naturais , Cetuximab/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Sítios de Ligação de Anticorpos , Receptores ErbB/metabolismo , Epitopos/metabolismo
4.
Front Immunol ; 14: 1227572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965326

RESUMO

The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously. Two bibody constructs, [CD20×NKG2D#3] and [CD20×NKG2D#32], efficiently activated natural killer (NK) cells in co-cultures with CD20+ lymphoma cells. Both bibodies triggered NK cell-mediated lysis of lymphoma cells and especially enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by CD38 or CD19 specific monoclonal antibodies suggesting a synergistic effect between NKG2D and FcγRIIIA signaling pathways in NK cell activation. The [CD20×NKG2D] bibodies were not effective in redirecting CD8+ T cells as single agents, but enhanced cytotoxicity when combined with a bispecific [CD19×CD3] T cell engager, indicating that NKG2D signaling also supports CD3-mediated T cell activation. In conclusion, engagement of NKG2D with bispecific antibodies is attractive to directly activate cytotoxic lymphocytes or to support their activation by monoclonal antibodies or bispecific T cell engagers. As a perspective, co-targeting of two tumor antigens may allow fine-tuning of antibody cancer therapies. Our proposed combinatorial approach is potentially applicable for many existing immunotherapies but further testing in different preclinical models is necessary to explore the full potential.


Assuntos
Anticorpos Biespecíficos , Linfoma , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais , Linfoma/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Antígenos CD19
5.
Methods Mol Biol ; 2681: 61-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405643

RESUMO

The majority of therapeutic antibodies, bispecific antibodies, and chimeric antigen receptor (CAR) T cells in cancer therapy are based on an antibody or antibody fragment that specifically binds a target present on the surface of a tumor cell. Suitable antigens that can be used for immunotherapy are ideally tumor-specific or tumor-associated and stably expressed on the tumor cell. The identification of new target structures to further optimize immunotherapies could be realized by comparing healthy and tumor cells using "omics" methods to select promising proteins. However, differences in post-translational modifications and structural alterations that can be present on the tumor cell surface are difficult to identify or even not accessible by these techniques. In this chapter, we describe an alternative approach to potentially identify antibodies targeting novel tumor-associated antigens (TAA) or epitopes by using cellular screening and phage display of antibody libraries. Isolated antibody fragments can be further converted into chimeric IgG or other antibody formats to investigate the anti-tumor effector functions and finally identify and characterize the respective antigen.


Assuntos
Bacteriófagos , Neoplasias , Humanos , Antígenos de Superfície , Biblioteca de Peptídeos , Neoplasias/terapia , Antígenos , Antígenos de Neoplasias
6.
Methods Mol Biol ; 2681: 231-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405651

RESUMO

In recent years, the development of bispecific antibodies (bsAbs) has experienced tremendous progress for disease treatment, and consequently, a plethora of bsAbs is currently scrutinized in clinical trials. Besides antibody scaffolds, multifunctional molecules referred to as immunoligands have been developed. These molecules typically harbor a natural ligand entity for the engagement of a specific receptor, while binding to the additional antigen is facilitated by an antibody-derived paratope. Immunoligands can be exploited to conditionally activate immune cells, e.g., natural killer (NK) cells, in the presence of tumor cells, ultimately causing target-dependent tumor cell lysis. However, many ligands naturally show only moderate affinities toward their cognate receptor, potentially hampering killing capacities of immunoligands. Herein, we provide protocols for yeast surface display-based affinity maturation of B7-H6, the natural ligand of NK cell-activating receptor NKp30.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Ligantes , Receptor 3 Desencadeador da Citotoxicidade Natural/química , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Antígenos B7/química , Antígenos B7/metabolismo , Neoplasias/metabolismo , Células Matadoras Naturais
7.
MAbs ; 15(1): 2236265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469014

RESUMO

Here, we generated bispecific antibody (bsAb) derivatives that mimic the function of interleukin (IL)-18 based on single domain antibodies (sdAbs) specific to IL-18 Rα and IL-18 Rß. For this, camelids were immunized, followed by yeast surface display (YSD)-enabled discovery of VHHs targeting the individual receptor subunits. Upon reformatting into a strictly monovalent (1 + 1) bispecific sdAb architecture, several bsAbs triggered dose-dependent IL-18 R downstream signaling on IL-18 reporter cells, as well as IFN-γ release by peripheral blood mononuclear cells in the presence of low-dose IL-12. However, compared with IL-18, potencies and efficacies were considerably attenuated. By engineering paratope valencies and the spatial orientation of individual paratopes within the overall design architecture, we were able to generate IL-18 mimetics displaying significantly augmented functionalities, resulting in bispecific cytokine mimetics that were more potent than IL-18 in triggering proinflammatory cytokine release. Furthermore, generated IL-18 mimetics were unaffected from inhibition by IL-18 binding protein decoy receptor. Essentially, we demonstrate that this strategy enables the generation of IL-18 mimetics with tailor-made cytokine functionalities.


Assuntos
Anticorpos Biespecíficos , Anticorpos de Domínio Único , Interleucina-18 , Leucócitos Mononucleares , Sítios de Ligação de Anticorpos
8.
Front Immunol ; 14: 1178817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346044

RESUMO

Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Anticorpos , Ácidos Siálicos/metabolismo , Receptores ErbB , Microambiente Tumoral
9.
Neuro Oncol ; 25(11): 2001-2014, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335916

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has proven to be successful against hematological malignancies. However, exploiting CAR T cells to treat solid tumors is more challenging for various reasons including the lack of suitable target antigens. Here, we identify the transmembrane protein CD317 as a novel target antigen for CAR T cell therapy against glioblastoma, one of the most aggressive solid tumors. METHODS: CD317-targeting CAR T cells were generated by lentivirally transducing human T cells from healthy donors. The anti-glioma activity of CD317-CAR T cells toward various glioma cells was assessed in vitro in cell lysis assays. Subsequently, we determined the efficacy of CD317-CAR T cells to control tumor growth in vivo in clinically relevant mouse glioma models. RESULTS: We generated CD317-specific CAR T cells and demonstrate strong anti-tumor activity against several glioma cell lines as well as primary patient-derived cells with varying CD317 expression levels in vitro. A CRISPR/Cas9-mediated knockout of CD317 protected glioma cells from CAR T cell lysis, demonstrating the target specificity of the approach. Silencing of CD317 expression in T cells by RNA interference reduced fratricide of engineered T cells and further improved their effector function. Using orthotopic glioma mouse models, we demonstrate the antigen-specific anti-tumor activity of CD317-CAR T cells, which resulted in prolonged survival and cure of a fraction of CAR T cell-treated animals. CONCLUSIONS: These data reveal a promising role of CD317-CAR T cell therapy against glioblastoma, which warrants further evaluation to translate this immunotherapeutic strategy into clinical neuro-oncology.


Assuntos
Glioblastoma , Glioma , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Receptores de Antígenos Quiméricos/genética , Glioblastoma/patologia , Linfócitos T , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Glioma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Protein Sci ; 32(3): e4593, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775946

RESUMO

Herein, we describe the generation of potent NK cell engagers (NKCEs) based on single domain antibodies (sdAbs) specific for NKp46 harboring the humanized Fab version of Cetuximab for tumor targeting. After immunization of camelids, a plethora of different VHH domains were retrieved by yeast surface display. Upon reformatting into Fc effector-silenced NKCEs targeting NKp46 and EGFR in a strictly monovalent fashion, the resulting bispecific antibodies elicited potent NK cell-mediated killing of EGFR-overexpressing tumor cells with potencies (EC50 killing) in the picomolar range. This was further augmented via co-engagement of Fcγ receptor IIIa (FcγRIIIa). Importantly, NKp46-specific sdAbs enabled the construction of various NKCE formats with different geometries and valencies which displayed favorable biophysical and biochemical properties without further optimization. By this means, killing capacities were further improved significantly. Hence, NKp46-specific sdAbs are versatile building blocks for the construction of different NKCE formats.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Anticorpos de Domínio Único , Humanos , Células Matadoras Naturais , Anticorpos Biespecíficos/química , Receptores ErbB , Linhagem Celular Tumoral
11.
Front Immunol ; 14: 1286097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259448

RESUMO

Ovarian carcinomas have the highest lethality amongst gynecological tumors. A problem after primary resection is the recurrence of epithelial ovarian carcinomas which is often associated with chemotherapy resistance. To improve the clinical outcome, it is of high interest to consider alternative therapy strategies. Due to their pronounced plasticity, γδ T cells are attractive for T-cell-based immunotherapy. However, tumors might escape by the release of lectin galectin-3, which impairs γδ T-cell function. Hence, we tested the effect of galectin-3 on the different γδ T-cell subsets. After coculture between ovarian tumor cells and Vδ1 or Vδ2 T cells enhanced levels of galectin-3 were released. This protein did not affect the cytotoxicity of both γδ T-cell subsets, but differentially influenced the proliferation of the two γδ T-cell subsets. While increased galectin-3 levels and recombinant galectin-3 inhibited the proliferation of Vδ2 T cells, Vδ1 T cells were unaffected. In contrast to Vδ1 T cells, the Vδ2 T cells strongly upregulated the galectin-3 binding partner α3ß1-integrin after their activation correlating with the immunosuppressive properties of galectin-3. In addition, galectin-3 reduced the effector memory compartment of zoledronate-activated Vδ2 T cells. Therefore, our data suggest that an activation of Vδ1 T-cell proliferation as part of a T-cell-based immunotherapy can be of advantage.


Assuntos
Galectina 3 , Neoplasias Ovarianas , Feminino , Humanos , Galectina 3/genética , Carcinoma Epitelial do Ovário , Proliferação de Células , Técnicas de Cocultura , Imunossupressores , Neoplasias Ovarianas/terapia
12.
J Hematol Oncol ; 15(1): 171, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457063

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a fatal clonal hematopoietic malignancy, which results from the accumulation of several genetic aberrations in myeloid progenitor cells, with a worldwide 5-year survival prognosis of about 30%. Therefore, the development of more effective therapeutics with novel mode of action is urgently demanded. One common mutated gene in the AML is the DNA-methyltransferase DNMT3A whose function in the development and maintenance of AML is still unclear. To specifically target "undruggable" oncogenes, we initially invented an RNAi-based targeted therapy option that uses the internalization capacity of a colorectal cancer specific anti-EGFR-antibody bound to cationic protamine and the anionic siRNA. Here, we present a new experimental platform technology of molecular oncogene targeting in AML. METHODS: Our AML-targeting system consists of an internalizing anti-CD33-antibody-protamine conjugate, which together with anionic molecules such as siRNA or ibrutinib-Cy3.5 and cationic free protamine spontaneously assembles into vesicular nanocarriers in aqueous solution. These nanocarriers were analyzed concerning their physical properties and relevant characteristics in vitro in cell lines and in vivo in xenograft tumor models and patient-derived xenograft leukemia models with the aim to prepare them for translation into clinical application. RESULTS: The nanocarriers formed depend on a balanced electrostatic combination of the positively charged cationic protamine-conjugated anti-CD33 antibody, unbound cationic protamine and the anionic cargo. This nanocarrier transports its cargo safely into the AML target cells and has therapeutic activity against AML in vitro and in vivo. siRNAs directed specifically against two common mutated genes in the AML, the DNA-methyltransferase DNMT3A and FLT3-ITD lead to a reduction of clonal growth in vitro in AML cell lines and inhibit tumor growth in vivo in xenotransplanted cell lines. Moreover, oncogene knockdown of DNMT3A leads to increased survival of mice carrying leukemia patient-derived xenografts. Furthermore, an anionic derivative of the approved Bruton's kinase (BTK) inhibitor ibrutinib, ibrutinib-Cy3.5, is also transported by this nanocarrier into AML cells and decreases colony formation. CONCLUSIONS: We report important results toward innovative personalized, targeted treatment options via electrostatic nanocarrier therapy in AML.


Assuntos
Leucemia Mieloide Aguda , Protaminas , Humanos , Camundongos , Animais , Eletricidade Estática , RNA Interferente Pequeno/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Metiltransferases , DNA
13.
Front Immunol ; 13: 929339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389667

RESUMO

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Assuntos
Antígeno CD47 , Leucemia Linfocítica Crônica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linhagem Celular Tumoral , Fagocitose , Macrófagos , Anticorpos/metabolismo , Antígenos CD/metabolismo
14.
Front Immunol ; 13: 957874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119088

RESUMO

Targeting CD19 represents a promising strategy for the therapy of B-cell malignancies. Although non-engineered CD19 antibodies are poorly effective in mediating complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP), these effector functions can be enhanced by Fc-engineering. Here, we engineered a CD19 antibody with the aim to improve effector cell-mediated killing and CDC activity by exchanging selected amino acid residues in the Fc domain. Based on the clinically approved Fc-optimized antibody tafasitamab, which triggers enhanced ADCC and ADCP due to two amino acid exchanges in the Fc domain (S239D/I332E), we additionally added the E345K amino acid exchange to favor antibody hexamerization on the target cell surface resulting in improved CDC. The dual engineered CD19-DEK antibody bound CD19 and Fcγ receptors with similar characteristics as the parental CD19-DE antibody. Both antibodies were similarly efficient in mediating ADCC and ADCP but only the dual optimized antibody was able to trigger complement deposition on target cells and effective CDC. Our data provide evidence that from a technical perspective selected Fc-enhancing mutations can be combined (S239D/I332E and E345K) allowing the enhancement of ADCC, ADCP and CDC with isolated effector populations. Interestingly, under more physiological conditions when the complement system and FcR-positive effector cells are available as effector source, strong complement deposition negatively impacts FcR engagement. Both effector functions were simultaneously active only at selected antibody concentrations. Dual Fc-optimized antibodies may represent a strategy to further improve CD19-directed cancer immunotherapy. In general, our results can help in guiding optimal antibody engineering strategies to optimize antibodies' effector functions.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG , Aminoácidos , Antígenos CD19 , Proteínas do Sistema Complemento , Fragmentos Fc das Imunoglobulinas , Receptores de IgG/genética , Receptores de IgG/metabolismo
15.
Front Immunol ; 13: 973702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059476

RESUMO

Pemphigoid diseases are autoimmune chronic inflammatory skin diseases, which are characterized by blistering of the skin and/or mucous membranes, and circulating and tissue-bound autoantibodies. The well-established pathomechanisms comprise autoantibodies targeting various structural proteins located at the dermal-epidermal junction, leading to complement factor binding and activation. Several effector cells are thus attracted and activated, which in turn inflict characteristic tissue damage and subepidermal blistering. Moreover, the detection of linear complement deposits in the skin is a diagnostic hallmark of all pemphigoid diseases. However, recent studies showed that blistering might also occur independently of complement. This review reassesses the importance of complement in pemphigoid diseases based on current research by contrasting and contextualizing data from in vitro, murine and human studies.


Assuntos
Penfigoide Bolhoso , Animais , Autoanticorpos , Vesícula , Proteínas do Sistema Complemento , Humanos , Camundongos , Pele
16.
J Immunol ; 209(9): 1724-1735, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104113

RESUMO

In this work, we have generated novel Fc-comprising NK cell engagers (NKCEs) that bridge human NKp30 on NK cells to human epidermal growth factor receptor (EGFR) on tumor cells. Camelid-derived VHH single-domain Abs specific for human NKp30 and a humanized Fab derived from the EGFR-specific therapeutic Ab cetuximab were used as binding arms. By combining camelid immunization with yeast surface display, we were able to isolate a diverse panel of NKp30-specific VHHs against different epitopes on NKp30. Intriguingly, NKCEs built with VHHs that compete for binding to NKp30 with B7-H6, the natural ligand of NKp30, were significantly more potent in eliciting tumor cell lysis of EGFR-positive tumor cells than NKCEs harboring VHHs that target different epitopes on NKp30 from B7-H6. We demonstrate that the NKCEs can be further improved with respect to killing capabilities by concomitant engagement of FcγRIIIa and that soluble B7-H6 does not impede cytolytic capacities of all scrutinized NKCEs at significantly higher B7-H6 concentrations than observed in cancer patients. Moreover, we show that physiological processes requiring interactions between membrane-bound B7-H6 and NKp30 on NK cells are unaffected by noncompeting NKCEs still eliciting tumor cell killing at low picomolar concentrations. Ultimately, the NKCEs generated in this study were significantly more potent in eliciting NK cell-mediated tumor cell lysis than cetuximab and elicited a robust release of proinflammatory cytokines, both features which might be beneficial for antitumor therapy.


Assuntos
Citocinas , Receptor 3 Desencadeador da Citotoxicidade Natural , Humanos , Antígenos B7/metabolismo , Morte Celular , Cetuximab/farmacologia , Epitopos , Receptores ErbB , Células Matadoras Naturais , Ligantes , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo
17.
Front Immunol ; 13: 949140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052078

RESUMO

Antibody-based immunotherapy is increasingly employed to treat acute lymphoblastic leukemia (ALL) patients. Many T-ALL cells express CD38 on their surface, which can be targeted by the CD38 antibody daratumumab (DARA), approved for the treatment of multiple myeloma. Tumor cell killing by myeloid cells is relevant for the efficacy of many therapeutic antibodies and can be more efficacious with human IgA than with IgG antibodies. This is demonstrated here by investigating antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cell-mediated cytotoxicity (ADCC) by polymorphonuclear (PMN) cells using DARA (human IgG1) and an IgA2 isotype switch variant (DARA-IgA2) against T-ALL cell lines and primary patient-derived tumor cells. ADCP and ADCC are negatively regulated by interactions between CD47 on tumor cells and signal regulatory protein alpha (SIRPα) on effector cells. In order to investigate the impact of this myeloid checkpoint on T-ALL cell killing, CD47 and glutaminyl-peptide cyclotransferase like (QPCTL) knock-out T-ALL cells were employed. QPTCL is an enzymatic posttranslational modifier of CD47 activity, which can be targeted by small molecule inhibitors. Additionally, we used an IgG2σ variant of the CD47 blocking antibody magrolimab, which is in advanced clinical development. Moreover, treatment of T-ALL cells with all-trans retinoic acid (ATRA) increased CD38 expression leading to further enhanced ADCP and ADCC, particularly when DARA-IgA2 was applied. These studies demonstrate that myeloid checkpoint blockade in combination with IgA2 variants of CD38 antibodies deserves further evaluation for T-ALL immunotherapy.


Assuntos
Antígeno CD47 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoglobulina A
19.
J Med Virol ; 94(12): 5780-5789, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35945627

RESUMO

The humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in patients with chronic inflammatory disease (CID) declines more rapidly with tumor necrosis factor-α (TNF-α) inhibition. Furthermore, the efficacy of current vaccines against Omicron variants of concern (VOC) including BA.2 is limited. Alterations within immune cell populations, changes in IgG affinity, and the ability to neutralize a pre-VOC strain and the BA.2 virus were investigated in these at-risk patients. Serum levels of anti-SARS-CoV-2 IgG, IgG avidity, and neutralizing antibodies (NA) were determined in anti-TNF-α patients (n = 10) and controls (n = 24 healthy individuals; n = 12 patients under other disease-modifying antirheumatic drugs, oDMARD) before and after the second and third vaccination by ELISA, immunoblot and live virus neutralization assay. SARS-CoV-2-specific B- and T cell subsets were analysed by multicolor flow cytometry. Six months after the second vaccination, anti-SARS-CoV-2 IgG levels, IgG avidity and anti-pre-VOC NA titres were significantly reduced in anti-TNF-α recipients compared to controls (healthy individuals: avidity: p ≤ 0.0001; NA: p = 0.0347; oDMARDs: avidity: p = 0.0012; NA: p = 0.0293). The number of plasma cells was increased in anti-TNF-α patients (Healthy individuals: p = 0.0344; oDMARDs: p = 0.0254), while the absolute number of SARS-CoV-2-specific plasma cells 7 days after 2nd vaccination were comparable. Even after a third vaccination, these patients had lower anti-BA.2 NA titres compared to both other groups. We show a reduced SARS-CoV-2 neutralizing capacity in patients under TNF-α blockade. In this cohort, the plasma cell response appears to be less specific and shows stronger bystander activation. While these effects were observable after the first two vaccinations and with older VOC, the differences in responses to BA.2 were enhanced.


Assuntos
Vacinas contra a AIDS , Antirreumáticos , COVID-19 , Vacinas contra Influenza , Vacinas contra Papillomavirus , Vacinas contra Vírus Sincicial Respiratório , Vacinas contra a SAIDS , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BCG , COVID-19/prevenção & controle , Vacina contra Difteria e Tétano , Vacina contra Difteria, Tétano e Coqueluche , Humanos , Imunidade , Imunoglobulina G , Vacina contra Sarampo-Caxumba-Rubéola , SARS-CoV-2 , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Vacinação
20.
Front Immunol ; 13: 908093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784366

RESUMO

To identify new antibodies for the treatment of plasma cell disorders including multiple myeloma (MM), a single-chain Fragment variable (scFv) antibody library was generated by immunizing mice with patient-derived malignant plasma cells. To enrich antibodies binding myeloma antigens, phage display with cellular panning was performed. After depleting the immune library with leukocytes of healthy donors, selection of antibodies was done with L-363 plasma cell line in two consecutive panning rounds. Monitoring the antibodies' enrichment throughout the panning by next-generation sequencing (NGS) identified several promising candidates. Initially, 41 unique scFv antibodies evolving from different B cell clones were selected. Nine of these antibodies strongly binding to myeloma cells and weakly binding to peripheral blood mononuclear cells (PBMC) were characterized. Using stably transfected Chinese hamster ovary cells expressing individual myeloma-associated antigens revealed that two antibodies bind CD38 and intercellular adhesion molecule-1 (ICAM-1), respectively, and 7 antibodies target yet unknown antigens. To evaluate the therapeutic potential of our new antibodies, in a first proof-of-concept study the CD38 binding scFv phage antibody was converted into a chimeric IgG1. Further analyses revealed that #5-CD38-IgG1 shared an overlapping epitope with daratumumab and isatuximab and had potent anti-myeloma activity comparable to the two clinically approved CD38 antibodies. These results indicate that by phage display and deep sequencing, new antibodies with therapeutic potential for MM immunotherapy can be identified.


Assuntos
Bacteriófagos , Plasmócitos , Animais , Células CHO , Cricetinae , Cricetulus , Sequenciamento de Nucleotídeos em Larga Escala , Imunoglobulina G , Fatores Imunológicos , Imunoterapia , Leucócitos Mononucleares , Camundongos , Biblioteca de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...